3.4.69 \(\int \frac {x^{3/2} (A+B x^2)}{a+b x^2} \, dx\) [369]

3.4.69.1 Optimal result
3.4.69.2 Mathematica [A] (verified)
3.4.69.3 Rubi [A] (verified)
3.4.69.4 Maple [A] (verified)
3.4.69.5 Fricas [C] (verification not implemented)
3.4.69.6 Sympy [A] (verification not implemented)
3.4.69.7 Maxima [A] (verification not implemented)
3.4.69.8 Giac [A] (verification not implemented)
3.4.69.9 Mupad [B] (verification not implemented)

3.4.69.1 Optimal result

Integrand size = 22, antiderivative size = 255 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 (A b-a B) \sqrt {x}}{b^2}+\frac {2 B x^{5/2}}{5 b}+\frac {\sqrt [4]{a} (A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{9/4}}-\frac {\sqrt [4]{a} (A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{9/4}}+\frac {\sqrt [4]{a} (A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{9/4}}-\frac {\sqrt [4]{a} (A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{9/4}} \]

output
2/5*B*x^(5/2)/b+1/2*a^(1/4)*(A*b-B*a)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^( 
1/4))/b^(9/4)*2^(1/2)-1/2*a^(1/4)*(A*b-B*a)*arctan(1+b^(1/4)*2^(1/2)*x^(1/ 
2)/a^(1/4))/b^(9/4)*2^(1/2)+1/4*a^(1/4)*(A*b-B*a)*ln(a^(1/2)+x*b^(1/2)-a^( 
1/4)*b^(1/4)*2^(1/2)*x^(1/2))/b^(9/4)*2^(1/2)-1/4*a^(1/4)*(A*b-B*a)*ln(a^( 
1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/b^(9/4)*2^(1/2)+2*(A*b-B*a 
)*x^(1/2)/b^2
 
3.4.69.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.59 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 \sqrt {x} \left (5 A b-5 a B+b B x^2\right )}{5 b^2}-\frac {\sqrt [4]{a} (-A b+a B) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{\sqrt {2} b^{9/4}}+\frac {\sqrt [4]{a} (-A b+a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} b^{9/4}} \]

input
Integrate[(x^(3/2)*(A + B*x^2))/(a + b*x^2),x]
 
output
(2*Sqrt[x]*(5*A*b - 5*a*B + b*B*x^2))/(5*b^2) - (a^(1/4)*(-(A*b) + a*B)*Ar 
cTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/(Sqrt[2]*b^ 
(9/4)) + (a^(1/4)*(-(A*b) + a*B)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x]) 
/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2]*b^(9/4))
 
3.4.69.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {363, 262, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx\)

\(\Big \downarrow \) 363

\(\displaystyle \frac {(A b-a B) \int \frac {x^{3/2}}{b x^2+a}dx}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {a \int \frac {1}{\sqrt {x} \left (b x^2+a\right )}dx}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \int \frac {1}{b x^2+a}d\sqrt {x}}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(A b-a B) \left (\frac {2 \sqrt {x}}{b}-\frac {2 a \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}\right )}{b}+\frac {2 B x^{5/2}}{5 b}\)

input
Int[(x^(3/2)*(A + B*x^2))/(a + b*x^2),x]
 
output
(2*B*x^(5/2))/(5*b) + ((A*b - a*B)*((2*Sqrt[x])/b - (2*a*((-(ArcTan[1 - (S 
qrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + ( 
Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a]) + 
 (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2] 
*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b 
]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a])))/b))/b
 

3.4.69.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 363
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), 
 x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3))   Int[(e*x)^ 
m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d 
, 0] && NeQ[m + 2*p + 3, 0]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.69.4 Maple [A] (verified)

Time = 2.77 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.54

method result size
risch \(\frac {2 \left (b B \,x^{2}+5 A b -5 B a \right ) \sqrt {x}}{5 b^{2}}-\frac {\left (A b -B a \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}\) \(138\)
derivativedivides \(\frac {\frac {2 b B \,x^{\frac {5}{2}}}{5}+2 A b \sqrt {x}-2 B a \sqrt {x}}{b^{2}}-\frac {\left (A b -B a \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}\) \(141\)
default \(\frac {\frac {2 b B \,x^{\frac {5}{2}}}{5}+2 A b \sqrt {x}-2 B a \sqrt {x}}{b^{2}}-\frac {\left (A b -B a \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}\) \(141\)

input
int(x^(3/2)*(B*x^2+A)/(b*x^2+a),x,method=_RETURNVERBOSE)
 
output
2/5*(B*b*x^2+5*A*b-5*B*a)*x^(1/2)/b^2-1/4*(A*b-B*a)/b^2*(a/b)^(1/4)*2^(1/2 
)*(ln((x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*x^(1/2)*2 
^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1 
/2)/(a/b)^(1/4)*x^(1/2)-1))
 
3.4.69.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 597, normalized size of antiderivative = 2.34 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=-\frac {5 \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} \sqrt {x}\right ) + 5 i \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (i \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} \sqrt {x}\right ) - 5 i \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (-i \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} \sqrt {x}\right ) - 5 \, b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (-b^{2} \left (-\frac {B^{4} a^{5} - 4 \, A B^{3} a^{4} b + 6 \, A^{2} B^{2} a^{3} b^{2} - 4 \, A^{3} B a^{2} b^{3} + A^{4} a b^{4}}{b^{9}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} \sqrt {x}\right ) - 4 \, {\left (B b x^{2} - 5 \, B a + 5 \, A b\right )} \sqrt {x}}{10 \, b^{2}} \]

input
integrate(x^(3/2)*(B*x^2+A)/(b*x^2+a),x, algorithm="fricas")
 
output
-1/10*(5*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2*a^3*b^2 - 4*A^3*B*a^2* 
b^3 + A^4*a*b^4)/b^9)^(1/4)*log(b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2 
*a^3*b^2 - 4*A^3*B*a^2*b^3 + A^4*a*b^4)/b^9)^(1/4) - (B*a - A*b)*sqrt(x)) 
+ 5*I*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2*a^3*b^2 - 4*A^3*B*a^2*b^3 
 + A^4*a*b^4)/b^9)^(1/4)*log(I*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2* 
a^3*b^2 - 4*A^3*B*a^2*b^3 + A^4*a*b^4)/b^9)^(1/4) - (B*a - A*b)*sqrt(x)) - 
 5*I*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2*a^3*b^2 - 4*A^3*B*a^2*b^3 
+ A^4*a*b^4)/b^9)^(1/4)*log(-I*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2* 
a^3*b^2 - 4*A^3*B*a^2*b^3 + A^4*a*b^4)/b^9)^(1/4) - (B*a - A*b)*sqrt(x)) - 
 5*b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2*a^3*b^2 - 4*A^3*B*a^2*b^3 + 
A^4*a*b^4)/b^9)^(1/4)*log(-b^2*(-(B^4*a^5 - 4*A*B^3*a^4*b + 6*A^2*B^2*a^3* 
b^2 - 4*A^3*B*a^2*b^3 + A^4*a*b^4)/b^9)^(1/4) - (B*a - A*b)*sqrt(x)) - 4*( 
B*b*x^2 - 5*B*a + 5*A*b)*sqrt(x))/b^2
 
3.4.69.6 Sympy [A] (verification not implemented)

Time = 4.74 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.08 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\begin {cases} \tilde {\infty } \left (2 A \sqrt {x} + \frac {2 B x^{\frac {5}{2}}}{5}\right ) & \text {for}\: a = 0 \wedge b = 0 \\\frac {\frac {2 A x^{\frac {5}{2}}}{5} + \frac {2 B x^{\frac {9}{2}}}{9}}{a} & \text {for}\: b = 0 \\\frac {2 A \sqrt {x} + \frac {2 B x^{\frac {5}{2}}}{5}}{b} & \text {for}\: a = 0 \\\frac {2 A \sqrt {x}}{b} + \frac {A \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {A \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {A \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b} - \frac {2 B a \sqrt {x}}{b^{2}} - \frac {B a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2}} + \frac {B a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2}} + \frac {B a \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b^{2}} + \frac {2 B x^{\frac {5}{2}}}{5 b} & \text {otherwise} \end {cases} \]

input
integrate(x**(3/2)*(B*x**2+A)/(b*x**2+a),x)
 
output
Piecewise((zoo*(2*A*sqrt(x) + 2*B*x**(5/2)/5), Eq(a, 0) & Eq(b, 0)), ((2*A 
*x**(5/2)/5 + 2*B*x**(9/2)/9)/a, Eq(b, 0)), ((2*A*sqrt(x) + 2*B*x**(5/2)/5 
)/b, Eq(a, 0)), (2*A*sqrt(x)/b + A*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/ 
4))/(2*b) - A*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(2*b) - A*(-a/b)* 
*(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/b - 2*B*a*sqrt(x)/b**2 - B*a*(-a/b)**(1 
/4)*log(sqrt(x) - (-a/b)**(1/4))/(2*b**2) + B*a*(-a/b)**(1/4)*log(sqrt(x) 
+ (-a/b)**(1/4))/(2*b**2) + B*a*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/ 
b**2 + 2*B*x**(5/2)/(5*b), True))
 
3.4.69.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.92 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {{\left (\frac {2 \, \sqrt {2} {\left (B a - A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} {\left (B a - A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} {\left (B a - A b\right )} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (B a - A b\right )} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}\right )} a}{4 \, b^{2}} + \frac {2 \, {\left (B b x^{\frac {5}{2}} - 5 \, {\left (B a - A b\right )} \sqrt {x}\right )}}{5 \, b^{2}} \]

input
integrate(x^(3/2)*(B*x^2+A)/(b*x^2+a),x, algorithm="maxima")
 
output
1/4*(2*sqrt(2)*(B*a - A*b)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2 
*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 
 2*sqrt(2)*(B*a - A*b)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sq 
rt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sq 
rt(2)*(B*a - A*b)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a 
))/(a^(3/4)*b^(1/4)) - sqrt(2)*(B*a - A*b)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sq 
rt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)))*a/b^2 + 2/5*(B*b*x^(5/2) - 
 5*(B*a - A*b)*sqrt(x))/b^2
 
3.4.69.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.03 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{3}} + \frac {2 \, {\left (B b^{4} x^{\frac {5}{2}} - 5 \, B a b^{3} \sqrt {x} + 5 \, A b^{4} \sqrt {x}\right )}}{5 \, b^{5}} \]

input
integrate(x^(3/2)*(B*x^2+A)/(b*x^2+a),x, algorithm="giac")
 
output
1/2*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(1/2*sqrt(2)*(sq 
rt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/b^3 + 1/2*sqrt(2)*((a*b^3)^(1/ 
4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*s 
qrt(x))/(a/b)^(1/4))/b^3 + 1/4*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)* 
A*b)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^3 - 1/4*sqrt(2)*(( 
a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x 
 + sqrt(a/b))/b^3 + 2/5*(B*b^4*x^(5/2) - 5*B*a*b^3*sqrt(x) + 5*A*b^4*sqrt( 
x))/b^5
 
3.4.69.9 Mupad [B] (verification not implemented)

Time = 5.16 (sec) , antiderivative size = 789, normalized size of antiderivative = 3.09 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{a+b x^2} \, dx=\sqrt {x}\,\left (\frac {2\,A}{b}-\frac {2\,B\,a}{b^2}\right )+\frac {2\,B\,x^{5/2}}{5\,b}-\frac {{\left (-a\right )}^{1/4}\,\mathrm {atan}\left (\frac {\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}-\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )}{2\,b^{9/4}}\right )\,1{}\mathrm {i}}{2\,b^{9/4}}+\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}+\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )}{2\,b^{9/4}}\right )\,1{}\mathrm {i}}{2\,b^{9/4}}}{\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}-\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )}{2\,b^{9/4}}\right )}{2\,b^{9/4}}-\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}+\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )}{2\,b^{9/4}}\right )}{2\,b^{9/4}}}\right )\,\left (A\,b-B\,a\right )\,1{}\mathrm {i}}{b^{9/4}}-\frac {{\left (-a\right )}^{1/4}\,\mathrm {atan}\left (\frac {\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}-\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )\,1{}\mathrm {i}}{2\,b^{9/4}}\right )}{2\,b^{9/4}}+\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}+\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )\,1{}\mathrm {i}}{2\,b^{9/4}}\right )}{2\,b^{9/4}}}{\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}-\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )\,1{}\mathrm {i}}{2\,b^{9/4}}\right )\,1{}\mathrm {i}}{2\,b^{9/4}}-\frac {{\left (-a\right )}^{1/4}\,\left (A\,b-B\,a\right )\,\left (\frac {16\,\sqrt {x}\,\left (A^2\,a^2\,b^2-2\,A\,B\,a^3\,b+B^2\,a^4\right )}{b}+\frac {{\left (-a\right )}^{1/4}\,\left (32\,A\,a^2\,b^2-32\,B\,a^3\,b\right )\,\left (A\,b-B\,a\right )\,1{}\mathrm {i}}{2\,b^{9/4}}\right )\,1{}\mathrm {i}}{2\,b^{9/4}}}\right )\,\left (A\,b-B\,a\right )}{b^{9/4}} \]

input
int((x^(3/2)*(A + B*x^2))/(a + b*x^2),x)
 
output
x^(1/2)*((2*A)/b - (2*B*a)/b^2) + (2*B*x^(5/2))/(5*b) - ((-a)^(1/4)*atan(( 
((-a)^(1/4)*(A*b - B*a)*((16*x^(1/2)*(B^2*a^4 + A^2*a^2*b^2 - 2*A*B*a^3*b) 
)/b - ((-a)^(1/4)*(32*A*a^2*b^2 - 32*B*a^3*b)*(A*b - B*a))/(2*b^(9/4)))*1i 
)/(2*b^(9/4)) + ((-a)^(1/4)*(A*b - B*a)*((16*x^(1/2)*(B^2*a^4 + A^2*a^2*b^ 
2 - 2*A*B*a^3*b))/b + ((-a)^(1/4)*(32*A*a^2*b^2 - 32*B*a^3*b)*(A*b - B*a)) 
/(2*b^(9/4)))*1i)/(2*b^(9/4)))/(((-a)^(1/4)*(A*b - B*a)*((16*x^(1/2)*(B^2* 
a^4 + A^2*a^2*b^2 - 2*A*B*a^3*b))/b - ((-a)^(1/4)*(32*A*a^2*b^2 - 32*B*a^3 
*b)*(A*b - B*a))/(2*b^(9/4))))/(2*b^(9/4)) - ((-a)^(1/4)*(A*b - B*a)*((16* 
x^(1/2)*(B^2*a^4 + A^2*a^2*b^2 - 2*A*B*a^3*b))/b + ((-a)^(1/4)*(32*A*a^2*b 
^2 - 32*B*a^3*b)*(A*b - B*a))/(2*b^(9/4))))/(2*b^(9/4))))*(A*b - B*a)*1i)/ 
b^(9/4) - ((-a)^(1/4)*atan((((-a)^(1/4)*(A*b - B*a)*((16*x^(1/2)*(B^2*a^4 
+ A^2*a^2*b^2 - 2*A*B*a^3*b))/b - ((-a)^(1/4)*(32*A*a^2*b^2 - 32*B*a^3*b)* 
(A*b - B*a)*1i)/(2*b^(9/4))))/(2*b^(9/4)) + ((-a)^(1/4)*(A*b - B*a)*((16*x 
^(1/2)*(B^2*a^4 + A^2*a^2*b^2 - 2*A*B*a^3*b))/b + ((-a)^(1/4)*(32*A*a^2*b^ 
2 - 32*B*a^3*b)*(A*b - B*a)*1i)/(2*b^(9/4))))/(2*b^(9/4)))/(((-a)^(1/4)*(A 
*b - B*a)*((16*x^(1/2)*(B^2*a^4 + A^2*a^2*b^2 - 2*A*B*a^3*b))/b - ((-a)^(1 
/4)*(32*A*a^2*b^2 - 32*B*a^3*b)*(A*b - B*a)*1i)/(2*b^(9/4)))*1i)/(2*b^(9/4 
)) - ((-a)^(1/4)*(A*b - B*a)*((16*x^(1/2)*(B^2*a^4 + A^2*a^2*b^2 - 2*A*B*a 
^3*b))/b + ((-a)^(1/4)*(32*A*a^2*b^2 - 32*B*a^3*b)*(A*b - B*a)*1i)/(2*b^(9 
/4)))*1i)/(2*b^(9/4))))*(A*b - B*a))/b^(9/4)